Bone Tissue Engineering by Bioreactor Katsuko S Fruukawa, Takashi Ushida, Du Dajiang **Department of Mechanical Engineering, Department of Bioengineering** School of Engineering University of tokyo http://www.furukawa.t.u-tokyo.ac.jp/ furukawa@mech.t.u-tokyo.ac.jp

Purpose

Oscillatory flow

 \rightarrow Loading induced flow profile in vivo

Develop a hydrodynamic bioreactor :

Compact Safe Easy operation In-line seeding with high efficiency Small culture volume $\leftarrow \rightarrow$ large culture volume

Spacial Distribution of Cell Viability

Oscillatory Perfusion System

Seeding ring

In clean bench In incubator ALP Staining Iture Perfusion Culture (0.5ml/min) Static Culture Upper Middle Bottomower

DNA Content MTT₁ Staining β-TCP Scaffold (**\operatorname{410mm} × h8mm**) **DNA Content** Top Dropping Static ALP Activity 24 hrs 5 days MC 3T3-E1 MTT Staining Osteoblast-like cells $1.5 \times 10^{6} / 100 \mu$ l Oscillatory Flow rate Hoechst/ PI Mixing 0.5ml / min Staining After 2 hrs +1600 µl Media **ALP** Activity Early Osteogenic Marker Static Static Perfusion Perfusion ⊊^{0.14} 0.12 **V** 0.12 0.10 **ALP Activit/dsDNA** (mM/hr/ng) 0.04 0.02 **D** 0.10 ¥ 0.08 2 0.06 .2 0.04 0.02 ₹ 0.02 ALP 0.00 0.00 Perfusion Static Perfusion Static

Methods of Seeding and Culture

Total differentiation per scaffold: Perfusion > Static (p < 0.05)

Evaluation of Flow Rate

		oform		
RATE (ml/min/well)	Volume (ml/well)	f (Hz)	τ (dyn/cm²)	
0.00	0	0	0	
0.05	0.5	1/1200	0.004	1
0.50	0.5	1/120	0.04]
1.00	1.0	1/120	0.08	l/mi
12.00	0.2	1/2	0.96 ≈1.0	
24.00	0.4	1/2	1.92 ≈2.0	rate
п		Pr +	obe silicon	

The difference in flow rate among the 6 wells:5.81%±0.6 (n=3)

Perfusion > Static (p < 0.1)

Average differentiation per cell:

Q: what new? Comparison

Safety

Conclusion

Tissue engineering bone with clinical relevant size could be cultured uniformly in only 1.5ml media by the oscillatory perfusion system.

Oscillatory perfusion system: Compact, efficient seeding & culture, safe, etc. The only bioreactor \rightarrow uniform 3D culture 0.5ml/min \rightarrow optimized Cassette design \rightarrow internal flow+ external flow

Strategy of 3D culture of customized tissue engineering bone was established - first study